The function p is defined as $p(x)=x^{2}-3 x$. If the function q is defined as $q(x)=p(x)-4$, what is the value of $q(10)$?
A) -30
$x^{2}-3 x-4$
B) 6

D) 70

$$
100-34
$$

20
If $c>0$ and m and n are positive integers, which of the following is equivalent to $c^{\frac{m}{n}}$?
A) $\frac{c^{m}}{c^{n}} C^{m-n} \mathrm{Cm}^{m}$
B) $c m-n$
c^{n}
C) $(\sqrt[m]{c})^{n}$
$\sqrt[n]{C^{m}}$
(D) $(\sqrt[n]{c})^{m}$

In the figure above, each pulley added to the pulley system after Pulley A reduces the amount of force required to lift an object to 50% of the original amount. If the system has three additional pulleys, what would be the approximate force, in Newtons, that is exerted to lift a weight that normally requires 200 pounds of force to lift? (1 Newton $=0.224$ pounds)
A) 5.6200 lbs anew
B) 11.2

D) 223.2

892 necutons

6.75
(.0675)(200)
$131 \mathrm{lbs}_{\times} \frac{\mathrm{NeW}}{.22416 \mathrm{~s}}$

$$
60.28
$$

The function p is defined as $p(x)=x^{2}-3 x$. If the function q is defined as $q(x)=p(x)-4$, what is the value of $q(10)$?
A) -30
$x^{2}-3 x-4$
B) 6

D) 70

$$
100-34
$$

20
If $c>0$ and m and n are positive integers, which of the following is equivalent to $c^{\frac{m}{n}}$?
A) $\frac{c^{m}}{c^{n}} C^{m-n} \mathrm{Cm}^{m}$
B) $c m-n$
c^{n}
C) $(\sqrt[m]{c})^{n}$
$\sqrt[n]{C^{m}}$
(D) $(\sqrt[n]{c})^{m}$

In the figure above, each pulley added to the pulley system after Pulley A reduces the amount of force required to lift an object to 50% of the original amount. If the system has three additional pulleys, what would be the approximate force, in Newtons, that is exerted to lift a weight that normally requires 200 pounds of force to lift? (1 Newton $=0.224$ pounds)
A) 5.6200 lbs anew
B) 11.2

D) 223.2

892 newtons
6.75
(.0675) (200)
$131 \mathrm{lbs}_{\times} \frac{\mathrm{NeW}}{.22416 \mathrm{~s}}$

$$
60.28
$$

$$
\begin{aligned}
& 15 B N: 0448 \\
& \text { ISENIOS \& } 1 \\
& \text { Page } 580 \\
& \text { Q } 2: 1 \\
& \text { Page } 590 \\
& \text { Q } 21 \\
& 1 \text { Newion }=0,224 \text { poumds. } \\
& \propto \text { lbs } \\
& 1 \text { Neivton } \times \frac{1}{0.224}=(0.224) \text { lles } \times \frac{1}{0.224} \\
& \frac{1}{0.224} \text { Newtorn }=1 \mathrm{lbs} \\
& \left(\frac{1}{0.224} \text { New } 104\right) \times(25)=(1 \text { e8s }) \times(25) \\
& (111.6) \text { Newion }=(25) \text { libs } \\
& \uparrow \text { ANSNER. }
\end{aligned}
$$

