BODMAS $=$ Brackets of PEMDAS = Parentheses PEMDAS = Please	Division Exponen Excuse	Multiplicatin Multiplication My	Division Dear	Addition Addition Aunt	Subtraction Subtraction Sally	* $=$ multiplication
JUST FOLLOW THE NEHA-KOMAL METHOD OF FOLLOWING THE COLORS						
The equation for a straight line can be written as						
y	$=$	(m)x $\mathrm{+}$,	,...........	
y	$=($ slo	pe) $x+($	rcept	y -	axis)...	

```
EXAMPLE#1:
Therefore, y = 5x+3 ..................................................................(2)
can also be written as
                    y = (5) x+(3)
The above equation has the format of equation (1)
m = (m)x+(b)..................................................................(1)
y y = (slope)x+(\mathrm{ intercept on y - axis)........................ (1b)}
```

Comparing equation (2b) with (1) \& (1b), we can see that
the slope is $=5$
and the intercept is $=3$

BODMAS $=$ Brackets of	Division	Multiplicatin		Addition	Subtraction
PEMDAS $=$ Parentheses	Exponent	Multiplication	Division	Addition	Subtraction
PEMDAS $=$ Please	Excuse	My	Dear	Aunt	Sally

The equation for a straight line can be written as

$$
\begin{array}{ll}
y & =(m) x+(b) \ldots \ldots . ~(1) ~ \tag{1}\\
y & =(\text { slope }) x+(\text { intercept on } y-\text { axis)............................ (1b) } \\
y
\end{array}
$$

EXAMPLE\#2:

Similarly, another equation

$$
\begin{equation*}
2 y=5 x+3 \tag{3}
\end{equation*}
$$

can also be written as

$$
\Rightarrow \quad 2 y \quad=\quad(5) x+(3)
$$

We need to re-arrange the above equation, such that it is of the form (1).
i.e. We need to re-arrange the above equation, such that we end up with only " y " on the LHS (Left Hand Side). To do that, we will multiply both sides of the equation with "1, ".
Multiplying both sides of the equation with the same number does not change the equation.

$$
\begin{array}{llll}
\Rightarrow & 2 y \times \frac{1}{2}= & \{(5) x & +(3)\} \times \frac{1}{2} \\
\Rightarrow & 2 y \times \frac{1}{2}= & \{(5) x & +(3)\} \times \frac{1}{2} \\
\Rightarrow & 2 y \times \frac{1}{2}= & \left\{\left(5 \times \frac{1}{2}\right) x+\left(3 \times \frac{1}{2}\right)\right\} \\
\Rightarrow & 1 y \times \frac{1}{1}= & \left\{\left(5 \times \frac{1}{2}\right) x+\left(3 \times \frac{1}{2}\right)\right\} \\
\Rightarrow & 1 y \times \frac{1}{1}= & \left\{\left(\frac{5 \times 1}{2}\right) x+\left(\frac{3 \times 1}{2}\right)\right\} \\
\Rightarrow & y & = & \left\{\left(\frac{5}{2}\right) x\right. \\
\Rightarrow & y & \left.+\left(\frac{3}{2}\right)\right\} \\
\Rightarrow & y & = & \left(\frac{5}{2}\right) x \tag{3b}\\
\Rightarrow & y & = & \left(\frac{5}{2}\right) x
\end{array}+\left(\frac{3}{2}\right) . \ldots \ldots
$$

Now the above equation has the format of equation (1)

\Rightarrow	y		(m) x	+ (b)	(1)	1)
\Rightarrow	y		(slope) x	+ (in		1b

Comparing equation (3b) with (1) \& (1b), we see that

the slope is	$=\frac{5}{2}$
and the intercept is	$=\frac{3}{2}$

BODMAS $=$ Brackets of	Division	Multiplicatin		Addition	Subtraction
PEMDAS $=$ Parentheses	Exponent	Multiplication	Division	Addition	Subtraction
PEMDAS $=$ Please	Excuse	My	Dear	Aunt	Sally

The equation for a straight line can be written as

$$
\begin{align*}
& y=(m) x+(b) \tag{1}\\
& y \quad=(\text { slope }) x+\text { (intercept on } y \text {-axis).......................... (1) }
\end{align*}
$$

EXAMPLE\#3:

Similarly, another equation

$$
\begin{equation*}
2 y=5 x-3 \tag{4}
\end{equation*}
$$

can also be written as

$$
\Rightarrow \quad 2 y \quad=\quad(5) x-(3)
$$

We need to re-arrange the above equation, such that it is of the form (1).
i.e. We need to re-arrange the above equation, such that we end up with only " y " on the LHS (Left Hand Side). To do that, we will multiply both sides of the equation with "1, ".
Multiplying both sides of the equation with the same number does not change the equation.

$$
\begin{align*}
& \Rightarrow \quad 2 y \times \frac{1}{2}=\quad\{(5) x \quad-(3)\} \times \frac{1}{2} \\
& \Rightarrow \quad 2 y \times \frac{1}{2}=\{(5) x \quad-(3)\} \times \frac{1}{2} \\
& \Rightarrow \quad 2 y \times \frac{1}{2}=\left\{\left(5 \times \frac{1}{2}\right) x-\left(3 \times \frac{1}{2}\right)\right\} \\
& \Rightarrow \quad 1 y \times \frac{1}{1}=\quad\left\{\left(5 \times \frac{1}{2}\right) x-\left(3 \times \frac{1}{2}\right)\right\} \\
& \Rightarrow \quad 1 y \times \frac{1}{1}=\quad\left\{\left(\frac{5 \times 1}{2}\right) x-\left(\frac{3 \times 1}{2}\right)\right\} \\
& \Rightarrow \quad y=\left\{\left(\frac{5}{2}\right) x \quad-\left(\frac{3}{2}\right)\right\} \\
& \Rightarrow \quad y=\left(\frac{5}{2}\right) x \quad-\left(\frac{3}{2}\right) \\
& \Rightarrow \quad y=\left(\frac{5}{2}\right) x \quad-\left(\frac{3}{2}\right) \\
& \Rightarrow y=\left(\frac{5}{2}\right) x+\left(-\frac{3}{2}\right) \text {. } \tag{4b}\\
& \text { Now the above equation has the format of equation (1) }
\end{align*}
$$

$$
\begin{aligned}
& \Rightarrow \quad y \quad \text { (slope) } x \quad+\text { (intercept on } y \text {-axis).................. (1b) }
\end{aligned}
$$

Comparing equation (4b) with (1) \& (1b), we see that
the slope is $\quad=\frac{5}{2}$
and the intercept is $=-\frac{3}{2}$

