This book has permission to use the "N&K method of COLORS".

Example: Coordinate Geometry, Coordinate Points

Question: You are given the coordinate points (-1,3), (3,0) and (6,4). Prove that they are the vertices of a right angle *triangle? Solution* **1** (*Pythagorean Theorem*)

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.

Given: 1) the coordinate points (-1,3), (3,0) and (6,4).

Solve: Prove that they are the vertices of a right angle triangle?

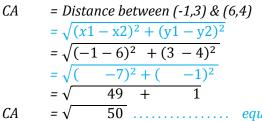
Road Map of Solution:

If it is a right angle triangle, the Pythagorean theorem will work.

i.e. The square of the largest side is equal to the sum of the squares of the two smaller sides.

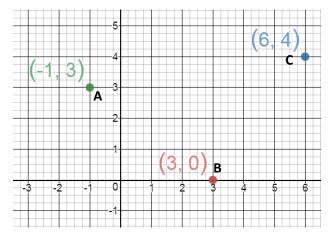
Step: Find the length of the sides of the triangle. i.e. the distances between the points.

Second Step: Substitute the values in the Pythagorean Theorem.


First Step: Find the length of the sides of the triangle. i.e. the distances between the points.

AB = Distance between (-1,3) & (3,0)
=
$$\sqrt{(x1-x2)^2 + (y1-y2)^2}$$

= $\sqrt{(-1-3)^2 + (3-0)^2}$
= $\sqrt{(-4)^2 + (3)^2}$
= $\sqrt{16 + 9}$
AB = $\sqrt{25}$... equation # 1


$$AB = \sqrt{25}$$
 equation #

BC = Distance between (3,0) & (6,4))
=
$$\sqrt{(x1-x2)^2 + (y1-y2)^2}$$

= $\sqrt{(3-6)^2 + (0-4)^2}$
= $\sqrt{(-3)^2 + (-4)^2}$
= $\sqrt{9+16}$

$$BC = \sqrt{25}$$
 equation # 2

...... equation #3 Distance obtained from Coordinate Ceometry

Second Step: Substitute the values in the Pythagorean Theorem

Pythagorean Theorem

$$CA^{2} = AB^{2} + BC^{2}$$

 $CA^{2} = (\sqrt{25})^{2} + (\sqrt{25})^{2}$
 $CA^{2} = 25 + 25$
 $CA^{2} = 50$

CA $\sqrt{50}$ Distance obtained from Pythagorean Theorem equation # 4

Since the length of CA from equation #s 3 & 4 are the same, we can conclude that the given points are the vertices of a right angle triangle.