This book has permission to use the "N\&K method of COLORS".
Example: Coordinate Geometry, Coordinate Points
Question: You are given the coordinate points ($-1,3$), (3,0) and (6,4). Prove that they are the vertices of a right angle triangle? Solution 1 (Pythagorean Theorem)

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.
Given: 1) the coordinate points $(-1,3),(3,0)$ and $(6,4)$.
Solve: Prove that they are the vertices of a right angle triangle?
Road Map of Solution:
If it is a right angle triangle, the Pythagorean theorem will work.
i.e. The square of the largest side is equal to the sum of the squares of the two smaller sides.

First Step: Find the length of the sides of the triangle. i.e. the distances between the points.
Second Step: Substitute the values in the Pythagorean Theorem.
First Step: Find the length of the sides of the triangle. i.e. the distances between the points.

$$
\begin{aligned}
& A B=\text { Distance between }(-1,3) \&(3,0) \\
& =\sqrt{(x 1-x 2)^{2}+(y 1-y 2)^{2}} \\
& =\sqrt{(-1-3)^{2}+(3-0)^{2}} \\
& =\sqrt{(-4)^{2}+(3)^{2}} \\
& =\sqrt{16+9} \\
& A B \\
& =\sqrt{25} \ldots \ldots \ldots \ldots \text {...................... } 1 \\
& B C=\text { Distance between }(3,0) \&(6,4)) \\
& =\sqrt{(x 1-\mathrm{x} 2)^{2}+(\mathrm{y} 1-\mathrm{y} 2)^{2}} \\
& =\sqrt{(3-6)^{2}+(0-4)^{2}} \\
& =\sqrt{(-3)^{2}+(-4)^{2}} \\
& =\sqrt{9+16} \\
& B C=\sqrt{25} \ldots \ldots \ldots \ldots \text { equation \# } 2 \\
& C A=\text { Distance between }(-1,3) \&(6,4) \\
& =\sqrt{(x 1-x 2)^{2}+(y 1-y 2)^{2}} \\
& =\sqrt{(-1-6)^{2}+(3-4)^{2}} \\
& =\sqrt{(\quad-7)^{2}+(\quad-1)^{2}} \\
& =\sqrt{49+1} \\
& C A=\sqrt{50} \ldots \ldots \ldots \ldots \text { equation \# } 3
\end{aligned}
$$

