This book has permission to use the "N&K method of COLORS".

Example: Coordinate Geometry, Coordinate Points

Question: You are given the coordinate points (-1,3), (3,0) and (6,4). Prove that they are the vertices of a right angle triangle? Solution **1** (*Pythagorean Theorem*)

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.

Given: 1) the coordinate points (-1,3), (3,0) and (6,4). Solve: Prove that they are the vertices of a right angle triangle?

Road Map of Solution:

If it is a right angle triangle, the Pythagorean theorem will work. i.e. The square of the largest side is equal to the sum of the squares of the two smaller sides. First Step: Find the length of the sides of the triangle. i.e. the distances between the points. Second Step: Substitute the values in the Pythagorean Theorem.

First Step: Find the length of the sides of the triangle. i.e. the distances between the points.

$$AB = Distance between (-1,3) \& (3,0)$$

$$= \sqrt{(x1 - x2)^{2} + (y1 - y2)^{2}}$$

$$= \sqrt{(-1 - 3)^{2} + (3 - 0)^{2}}$$

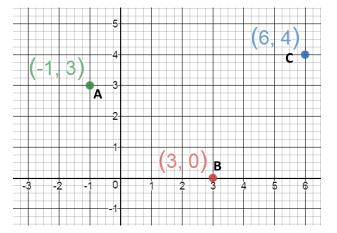
$$= \sqrt{(-4)^{2} + (-3)^{2}}$$

$$= \sqrt{(-4)^{2} + (-3)^{2}}$$

$$= \sqrt{(-4)^{2} + (-3)^{2}}$$

$$= \sqrt{(-3)^{2} + (y1 - y2)^{2}}$$

$$= \sqrt{(3 - 6)^{2} + (0 - 4)^{2}}$$


$$= \sqrt{(-3)^{2} + (-4)^{2}}$$

$$= \sqrt{(-1 - 6)^{2} + (3 - 4)^{2}}$$

$$= \sqrt{(-1 - 6)^{2} + (3 - 4)^{2}}$$

$$= \sqrt{(-7)^{2} + (-1)^{2}}$$

$$= \sqrt{(-7)^{2} + (-1)^{2}}$$

Distance obtained from Coordinate Geometry

Second Step: Substitute the values in the Pythagorean Theorem

Pythagorean Theorem							
CA^2	=	<i>AB</i> ² +	BC^2				
CA^2	=	$(\sqrt{25})^2$ +	$(\sqrt{25})^2$				
CA^2	=	25 +	25				
CA^2	=	50					
СА	=	$\sqrt{50}$		equation # 4	Distance obtained from	Pythagorean	Theorem

Since the length of CA from equation #s 3 & 4 are the same, we can conclude that the given points are the vertices of a right angle triangle.