This book has permission to use the "N\&K method of COLORS".
Question: A parallelogram is formed by the points $A(4,-2), B(7,2), C(0,9)$ and $D(-3,5)$. If $A B$ is the base of the parallelogram, what is the height of the parallelogram? What is the area of the parallelogram?
A) Height $=\frac{4}{5}$, Area $=4$
B) Height $=\frac{5}{5}$, Area $=5$
C) Height $=\frac{49}{5}$, Area $=49$
D) Height $=\frac{94}{5}$, Area $=94$

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.
Given: 1) A parallelogram formed by the points $A(4,-2), B(7,2), C(0,9)$ and $D(-3,5)$.
2) $A B$ is the base of the parallelogram.

Solve: What is the height of the parallelogram?
What is the area of the parallelogram?
Road Map of Solution:
First Step: Create the equation for the line passing through points $A(4,-2)$ and $B(7,2)$.
Second Step: Find the distance between points $A(4,-2)$ and $B(7,2)$. This can be used as the BASE of the parallelogram.
Third Step: Find the distance of point $C(0,9)$ from the line through points $A(4,-2)$ and $B(7,2)$.
This can be used as the HEIGHT of the parallelogram.
First Step: Create the equation for the line passing through points $A(4,-2)$ and $B(7,2)$.
We know that the equation for the line passing through point $\left(x_{1}, y_{1}\right)$ is given by

$$
\left(x-x_{1}\right)=\left(y-y_{1}\right) \quad \ldots . . .
$$

We also know that $\quad m=\frac{\text { rise }}{\text { run }}=$

$$
\left(x-x_{1}\right)=\left(y-y_{1}\right)
$$

equation \#1b
$\begin{array}{rr}\text { Using points } & A(1,-2) \text { and } B(-2) \text { for } \\ & \left(\boldsymbol{a}_{1}, y_{1}\right) \text { and }\left(\boldsymbol{\nabla}_{2}, y_{2}\right)\end{array}$
we get,

$$
\begin{aligned}
&\left(\frac{\left(\left(\boldsymbol{y}_{\mathbf{2}}\right)-\left(\boldsymbol{y}_{\mathbf{1}}\right)\right)}{\left(\left(\boldsymbol{x}_{\mathbf{2}}\right)-\left(\boldsymbol{x}_{\mathbf{1}}\right)\right)}\right)\left[\boldsymbol{x}-\left(\boldsymbol{x}_{\mathbf{1}}\right)\right]=\left[\boldsymbol{y}-\left(\boldsymbol{y}_{\mathbf{1}}\right)\right] \\
&\left(\frac{((\mathbf{2})-(\mathbf{- 2}))}{((\mathbf{7})-(\mathbf{4}))}\right)[\boldsymbol{x}-(\mathbf{4})]=[\boldsymbol{y}-(-\mathbf{2})] \\
&\left(\frac{(2+2)}{(7-4)}\right)[x-(4)]=[y-(-2)] \\
&\left(\frac{(4)}{(3)}\right)[x-(4)]=[y-(-2)] \\
& \frac{4(x)}{3}-\frac{4(4)}{3}=y+2 \\
& \frac{4(x)}{3}-\frac{16}{3}=y+2 \\
&-y-2+\left\{\frac{4(x)}{3}-\frac{16}{3}\right\}=\{y+2\}-y-2 \\
& \frac{4(x)}{3}-\frac{16}{3}=0 \\
&-y-2+\frac{4(x)}{3}-y-\frac{16}{3}-2
\end{aligned}
$$

This book has permission to use the "N\&K method of COLORS".

$$
\begin{aligned}
& \frac{4(x)}{3}-y-\frac{16}{3}-2 \times 1=0 \\
& \frac{4(x)}{3}-y-\frac{16}{3}-2 \times \frac{1}{1}=0 \\
& \frac{4(x)}{3}-y-\frac{16}{3}-2 \times \frac{3}{3}=0 \\
& \frac{4(x)}{3}-y-\frac{16}{3}-\frac{2 \times 3}{3}=0 \\
& \frac{4(x)}{3}-y-\frac{16}{3}-\frac{6}{3}=0
\end{aligned}
$$

Second Step: Find the distance between points $A(4,-2)$ and $B(7,2)$. This can be used as the BASE of the parallelogram. points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, we get,.
Distance between $A$ and $B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{[(7)-(4)]^{2}+[(2)-(-2)]^{2}} \\
& =\sqrt{[7-4]^{2}+[2+2]^{2}} \\
& =\sqrt{\left[\frac{3]^{2}+[ }{9}+\right.} \\
& =\sqrt{\frac{9}{25}} \\
& =\sqrt{\frac{25}{2}}
\end{aligned}
$$

Distance between $A$ and $B=5=$ BASE of the parallelogram
Third Step: Find the distance of point $C(0,9)$ from the line through points $A(4,-2)$ and $B(7,2)$.
This can be used as the HEIGHT of the parallelogram.
We also know that
the distance " $d$ " of point $C\left(x_{3}, y_{3}\right)$ from

is given by $\quad d=\frac{\left|a x_{3}+b y_{3}+c\right|}{\sqrt{a^{2}+b^{2}}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.

## Using point $C(0,9)$

for $\quad C\left(x_{3}, y_{3}\right)$
and
line
for $\quad(a) x+(b) y+(c)=0$

We get,

$$
\begin{aligned}
& d=\frac{\left|a x_{3}+\overline{b y_{3}}+\bar{c}\right|}{\sqrt{a^{2}+b^{2}}} \\
& d=\frac{\left|\left(\frac{4}{3}\right)(0)+(-1)(9)+\left(-\frac{22}{3}\right)\right|}{\sqrt{\left(\frac{4}{3}\right)^{2}+(-1)^{2}}} \\
& d=\frac{\left|\quad 0+(-1)(\mid)+\left(-\frac{22}{3}\right)\right|}{\sqrt{\left(\frac{6}{9}\right)+(1)}} \\
& d=\frac{\left|\quad 0 \quad-9-\frac{22}{3}\right|}{\sqrt{\left(\frac{16}{9}\right)+\left(\frac{9}{9}\right)}}
\end{aligned}
$$

This book has permission to use the " $N \& K$ method of COLORS".

$$
\begin{aligned}
& d=\frac{\left|0--\frac{9 \times 3}{1 \times 3}-\frac{22}{3}\right|}{\sqrt{\left(\frac{16+9}{9}\right)}} \\
& d=\frac{\left|\quad 0 \quad-\frac{27}{3}-\frac{22}{3}\right|}{\sqrt{\left(\frac{25}{9}\right)}} \\
& d=\frac{\left.0-\frac{27+22}{3} \right\rvert\,}{\sqrt{\left(\frac{25}{9}\right)}} \\
& d=\frac{\left\lvert\, \quad 0 \quad-\frac{49}{3}\right.}{\sqrt{\left(\frac{25}{9}\right)}} \\
& d=\frac{\left\lvert\,-\frac{49}{3}\right.}{\sqrt{\left(\frac{25}{9}\right)}} \\
& d=\frac{\frac{49}{3}}{\sqrt{\left(\frac{25}{9}\right)}} \\
& d=\frac{\frac{49}{3}}{\left(\frac{5}{3}\right)} \\
& d=\left(\frac{49}{3}\right)\left(\frac{3}{5}\right) \\
& d=\left(\frac{49}{5}\right) \quad=\quad \text { HEIGHT of the parallelogram }
\end{aligned}
$$

It is known that,
Area of a triangle $=\frac{1}{2} \times$ base $\times$ height.

$$
\begin{array}{ll}
=\frac{1}{2} \times 5 & \times\left(\frac{49}{5}\right) \\
= & \times\left(\frac{49}{2}\right)
\end{array}
$$

Since the parallelogram is on the same Base \& HEIGHT as the Triangle,
the Area of the Parallelogram $=$ TWICE the Area of the Triangle

$$
\begin{aligned}
& =z \quad \times\left(\frac{49}{z}\right) \\
& =1 \quad\left(\frac{49}{1}\right)
\end{aligned}
$$

Area of the Parallelogram $=\quad 49 \quad$ Answer (C)

