This book has permission to use the "N\&K method of COLORS".
Example: Question: If " n " is any positive integer, prove that only one of the numbers, " $n-1$ ", " $n+1$ " or " $n+3$ " is divisible by 3.

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.

When $n=6$

$$
\begin{array}{ll}
(n-1) & \text { is }=5 \\
(n+1) & \text { is }=7 \\
(n+3) & \text { is }=9
\end{array}
$$

The resulting numbers are 5, 7 \& 9. Only one (9) of which is divisible by 3.

When $n=7$

$$
\begin{array}{ll}
(n-1) & \text { is }=6 \\
(n+1) & \text { is }=8 \\
(n+3) & \text { is }=10
\end{array}
$$

The resulting numbers are $6,8 \& 10$. Only one (6) of which is divisible by 3 .

When $n=8$

$$
\begin{array}{ll}
(n-1) & \text { is }=7 \\
(n+1) & \text { is }=9 \\
(n+3) & \text { is }=11
\end{array}
$$

The resulting numbers are $7,9 \& 11$. Only one (9) of which is divisible by 3.

When $n=9$

$$
\begin{array}{ll}
(n-1) & \text { is }=8 \\
(n+1) & \text { is }=10 \\
(n+3) & \text { is }=12
\end{array}
$$

The resulting numbers are $8,10 \& 12$.
Only one (12) of which is divisible by 3 .

As can be seen from the trend above, the results will be similar when " n " is any other positive integer.
Therefore, when " n " is any positive integer, only one of the three numbers, " $n-1$ ", " $n+1$ " or " $n+3$ " is divisible by 3.

