This book has permission to use the "N&K method of COLORS".

12) Question: 1st Method. Which of the following points, is on the line 2y = 5x + 10;A) (10,0) *B*) (0,2) *C*) (0,3) D) (0,5) nw,nc

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.

Given: 1) equation of a line. 2y = 5x + 10..... *equation #1* Solve: Which of the points given above, is on the line (eq #1)?

Road Map of Solution:

First *Step: Draw the* x *and* y *axes in your work area.*

Second Step: Find the point (x_1, y_1) , where the line (eq #1) crosses the "x-axis" and

the point (x₂, y₂), where the line (eq #1) crosses the "y-axis"

Third Step: Mark the points on the x-y coordinate system sketched above.

Draw the line representing eq #1 through (x_1, y_1) and (x_2, y_2) on the x-y coordinate system.

Fourth Step: Mark the points representing the 4 choices given above. Check, which point is coincident with the line drawn earlier.

First *Step: Sketch the x and y axes in your work area. Done*

Second Step: Find the point (x_1, y_1) , where the line (eq #1) crosses the "x-axis" and the point (x_2, y_2) , where the line (eq #1) crosses the "y-axis"

To find the point (x_1, y_1) , where the line $(eq \# 1)$ crosses the "x-axis", substitute, " $y_1=0$ " in e	equation #1.
2y = 5x + 10	
$\Rightarrow \qquad 2(0) = 5x + 10$	
$\Rightarrow 0 = 5x + 10$	
$\Rightarrow 0 - 10 = 5x + 10 - 10$	
$\Rightarrow -10 = 5x + \frac{10}{10} - \frac{10}{10}$	
\Rightarrow -10 = 5x	
$\Rightarrow \frac{1}{5^{\times}} \{ -10 \} = \{ 5x \} \times \frac{1}{5}$	
$\Rightarrow \qquad \frac{1}{5}x \ \{ -\frac{10}{5} \} = \{ 5x \} \times \frac{1}{5}$	
$\Rightarrow \frac{1}{1}x \ \{-2\} = \{1x\} \times \frac{1}{1}$	
$\Rightarrow 1 \times \{ -2 \} = \{ 1x \} \times 1$	
\Rightarrow - 2 = x	
Therefore, (x_1, y_1) is equal to (-2, 0).	

Similarly, (x_2, y_2) is equal to (0, 5). This point is the same as choice (D) above. Answer (D)

Third Step: Not needed. See answer above. Fourth Step: Not needed. See answer above. *Click here to see the solution for slightly more complicated version of this problem*