This book has permission to use the " $N \& K$ method of COLORS".
10) Question: The equation below represents a line on the xy coordinate plane.
$2 y=10 x+6$
For which value of "x" would " y " be equal to " 29 "?
A) $\frac{5}{26}$
B) $\frac{5}{16}$
C) $\frac{16}{5}$
D) $\frac{26}{5}$
$n c$
For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.
Given: 1) The equation of a line on the xy-coordinate plane. $\quad 2 \mathrm{y}=10 \mathrm{x}+6$
Solve: For which value of "x" would " y " be equal to " 29 "?
Road Map of Solution:
First Step: Start with the original equation.
Second Step: Rewrite the above equation, such that we have only " x " on one side of the equation.
Third Step: Substitute " $\mathrm{y}=29$ " in that equation and solve tofind the value of " x ".
First Step: Start with the original equation

```
2y = 10x+6
```

Second Step: Rewrite the above equation such that we end up with only "x" one side of the equation.

$[2 \mathrm{y}]-6$	$=[10 \mathrm{x}+6]-6$
$2 \mathrm{y}-6$	
$2 \mathrm{y}-6$	$=10 \mathrm{x}+6-6$
$[2 \mathrm{y}-6] \times\left(\frac{1}{10}\right)$	$=[10 \mathrm{x}] \times\left(\frac{1}{10}\right)$
$\left[\begin{array}{ll}{[2 \mathrm{y}-6] \times\left(\frac{1}{10}\right)} & =[10 \mathrm{x}] \times\left(\frac{1}{10}\right) \\ \frac{[2 \mathrm{y}-6] \times(1)}{10} & =[4 \mathrm{x}] \times\left(\frac{1}{4}\right) \\ \frac{[2 \mathrm{y}-6]}{10} & =[4 \mathrm{x}] \times(1) \\ \frac{[2 \mathrm{y}-6]}{10} & =\mathrm{x} \\ \frac{[2(\mathrm{y})-6]}{10}\end{array}\right.$	$=\mathrm{x}$

Third Step: Substitute " $\mathrm{y}=29$ " in that equation and solve tofind the value of " x ".

