This book has permission to use the "N\&K method of COLORS".
14) Question: The table shown below lists the weight of seeds in grams. The reading 0.950 is a mistake. If that data point is removed from the data set, which of the following choices will see the maximum change in its value?
A) mean
B) mode
C) median
D) range
$n w, n c$.
For speed, while solving something similar, only THINK the words in blue;
WRITE only the words in other COLORS.

Given: 1) The table shown on the right lists the weight of seeds in grams.
2) The reading 0.950 is a mistake.

Solve: If that data point (0.950), which is an outlier, is removed from the data set, which of the following choices will see the maximum change in its value?

Road Map of Solution:

Weight of seeds
0.950
0.989
0.990
0.990
0.991
0.991
0.991
0.992
0.992
0.992
0.992
0.993
0.993
0.993
0.994
0.994
0.995

The calculations on the
RED .. bracket side \qquad include the outlier.

The calculations on the REEN bracket side do NOT include the outlier.
First Step: Calculate "mean".
Second Step: Calculate "mode".
Third Step: Calculate "median".
Fourth Step: Calculate "range".
First Step: Calculate "mean".

$$
\begin{aligned}
& \text { Mean }=\frac{(1 \times 0.950)+(1 \times 0.989)+(2 \times 0.990)+(3 \times 0.991)+(4 \times 0.992)+(3 \times 0.993)+(2 \times 0.994)+(1 \times 0.995)}{1+2+3}=0.990 \\
& \text { ean } \left.=\frac{+1}{+2}+2 \times 1 \times 0.989\right)+(2 \times 0.990)+(3 \times 0.991)+(4 \times 0.992)+(3 \times 0.993)+(2 \times 0.994)+(1 \times 0.995) \\
& +1
\end{aligned}
$$

Second Step: Calculate "mode".

Mode: It is the number that is repeated more often than any other. So, 0.992 is the mode for this data set, since it is repeated 4 times.

The mode stays the same for this data set, whether the outlier (0.950) is included or excluded in the data set. In a different data set, the mode may change, if an outlier were to be excluded.

Third Step: Calculate "median".
Median: The median is the middle value.
Since there are 17 rows in the data set, the contents of the 9 th row will be the median.
edian: The median is the middle value.
Since there are 16 rows in the data set, the Sum of the contents of the $8^{\text {th }} 9^{\text {th }}$ row divided by 2 , will be the median.
Fourth Step: Calculate "range".
Range = MaxValue - MinValue $=0.995-0.950=0.045$
Range $=$ MaxValue - MinValue $=0.995$ - 0.989 =
1.006

