This book has permission to use the "N&K method of COLORS".

25) Question: A basketball is released from the top of a 500 meters tall building. Approximately how much time (in seconds) after being released, will it reach the ground? Use the following formula

 $S = ut + \left(\frac{1}{2}\right)gt^2$

where

- *S* = distance traveled in meters
- u = initial velocity in meters/second
- t = time taken in seconds

 $g = acceleration due to gravity = 9.81 \frac{meters}{second^2}$

- A) 2 seconds
- B) 3 seconds
- C) 5 seconds
- D) 10 seconds

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.

Solution:

Given: 1) A basketball is released (NOT pushed / thrown up or down) from the top of a 100 meters tall building.

2) Approximately how much time (in seconds) after being released, will it reach the ground?

$$S = ut + \left(\frac{1}{2}\right)gt^2$$

Solve: Plug in the known (given) values into the equation above to find the value of "t".

Road Map of Solution:

First thing; variable; S = Distance travelled by the basketball = 500 meters Second thing; variable; u = initial velocity = 0 meters/second; It is zero, because, it is NOT launched in the direction, in which the "Distance Travelled" is being measured. It is *merely released.* Third thing; variable; t = time taken in seconds, to fall 500 meters to reach the ground. Fourth thing; constant; g = acceleration due to gravity= 9.81 meters/second² So, anything falling freely (no air resistance) under gravity will be travelling at $(9.81 \text{ meters/second}^2) \times (t \text{ second}) = (9.81 \times t) \text{ meters/second after "t" second of free fall.}$ $(9.81 \text{ meters/second}^2) \times (1 \text{ second}) = 9.81$ meters/second after "1" second of free fall. $(9.81 \text{ meters/second}^2) \times (2 \text{ second}) = 19.62$ meters/second after "2" second of free fall. $(9.81 \text{ meters/second}^2) \times (3 \text{ second}) = 29.43$ meters/second after "3" second of free fall. $(9.81 \text{ meters/second}^2) \times (4 \text{ second}) = 39.24$ meters/second after "4" second of free fall.

Given Third Statement:

C 2019

HTGFATS_SAT_book_20190220_1744_pwd_toOpen_ZZ02_toModify_XXXYYYZZ02.docx,

This book has permission to use the "N&K method of COLORS".

$\left(\begin{array}{c} 100 \times 10 \\ \hline \end{array}\right) =$	t^2	
$\left(\frac{100 \times 10}{9.81}\right) =$	t^2	
$(100) \times \left(\frac{10}{9.81}\right) =$	t^2	
$\sqrt{(100) \times \left(\frac{10}{9.81}\right)} =$	$\sqrt{t^2}$	
$\sqrt{(100)} \times \sqrt{\left(\frac{10}{9.81}\right)} =$	t	
$10 \times \sqrt{\frac{10}{9.81}} =$	t	
$10 \times \sqrt{1} =$	t (Approximately)	
10 × 1 =	t (Approximately) Answer(D)	