This book has permission to use the "N\&K method of COLORS".
25) Question: A basketball is released from the top of a 500 meters tall building. Approximately how much time (in seconds) after being released, will it reach the ground? Use the following formula

$$
S=u t+\left(\frac{1}{2}\right) g t^{2}
$$

where
$S=$ distance traveled in meters
$u=$ initial velocity in meters/second
$t=$ time taken in seconds
$g=$ acceleration due to gravity $=9.81 \frac{\text { meters }}{\text { second }^{2}}$
A) 2 seconds
B) 3 seconds
C) 5 seconds
D) 10 seconds

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.

Solution:

Given: 1) A basketball is released (NOT pushed / thrown up or down) from the top of a 100 meters tall building.
2) Approximately how much time (in seconds) after being released, will it reach the ground?
3) $S=u t+\left(\frac{1}{2}\right) g t^{2}$

Solve: Plug in the known (given) values into the equation above to find the value of " t ".
Road Map of Solution:
First thing; variable; $S=$ Distance travelled by the basketball $=500$ meters
Second thing; variable; $u=$ initial velocity $=0$ meters/second;
It is zero, because, it is NOT launched in the direction, in which the "Distance Travelled" is being measured. It is merely released.
Third thing; variable; $t=$ time taken in seconds, to fall 500 meters to reach the ground.
Fourth thing; constant; $g=$ acceleration due to gravity $=9.81$ meters $/$ second 2
So, anything falling freely (no air resistance) under gravity will be travelling at
(9.81 meters $/$ second $\left.{ }^{2}\right) \times(t$ second $)=(9.81 \times t)$ meters $/$ second after " t " second of free fall.
(9.81 meters $/$ second $\left.^{2}\right) \times(1$ second) $=9.81$ meters/second after " 1 " second of free fall.
(9.81 meters/second $\left.{ }^{2}\right) \times(2$ second $)=19.62 \quad$ meters/second after " 2 " second of free fall.
(9.81 meters $/$ second $\left.^{2}\right) \times(3$ second $)=29.43$ meters/second after " 3 " second of free fall.
(9.81 meters/second $\left.{ }^{2}\right) \times(4$ second) $=39.24 \quad$ meters $/$ second after " 4 " second of free fall.

Given Third Statement:

$$
\left.\begin{array}{ll}
S & =u t+\left(\frac{1}{2}\right) g t^{2} \\
S & =(u)(t) \quad+\left(\frac{1}{2}\right)(g)\left(t^{2}\right) \\
500 \mathrm{~m} & =(0 \text { meters } / \text { second })(t \text { second })+\left(\frac{1}{2}\right)\left(9.81 \frac{\text { meters }}{} \text { second }^{2}\right)(t \text { second })^{2} \\
500 & =0 \quad+\left(\frac{1 \times 9.81}{2}\right)\left(t^{2}\right) \\
500 & = \\
9.81 \\
2
\end{array}\right)\left(t^{2}\right)
$$

Insert explanation

$$
\begin{aligned}
& \{500\} \times\left(\frac{2}{9.81}\right)= \\
& \{500\} \times\left(\frac{2}{9.81}\right)= \\
& \left(\frac{500 \times 2}{9.81}\right)= \\
& \left(\frac{100 \times 5 \times 2}{9.81}\right)=
\end{aligned}
$$

$$
\left\{\left(\frac{9.81}{2}\right)\left(t^{2}\right)\right\} \times\left(\frac{2}{9.81}\right)
$$

$$
\left\{\left(\frac{9.81}{z}\right)\left(t^{2}\right)\right\} \times\left(\frac{z}{9.81}\right)
$$

$$
\left\{\left(\frac{1}{1}\right) \quad\left(t^{2}\right)\right\} \times\left(\frac{1}{1}\right)
$$

$$
t^{2}
$$

HTGFATS_SAT_book_20190220_1744_pwd_toOpen_ZZ02_toModify_XXXYYYZZO2.docx,

This book has permission to use the "N\&K method of COLORS".

$$
\begin{array}{rlrl}
\left(\frac{100 \times 10}{9.81}\right) & = & & t^{2} \\
\left(\frac{100 \times 10}{9.81}\right) & = & & t^{2} \\
(100) \times\left(\frac{10}{9.81}\right) & = & & t^{2} \\
\sqrt{(100) \times\left(\frac{10}{9.81}\right)} & = & \sqrt{t^{2}} \\
\sqrt{(100)} \times \sqrt{\left(\frac{10}{9.81}\right)} & = & t \\
10 \times \sqrt{\frac{10}{9.81}} & = & t \\
10 \times \sqrt{1} & = & t \quad \text { (Approximately) } \\
10 \times \sqrt{10} & = & t \quad \text { (Approximately) Answer }(D) \\
\hline
\end{array}
$$

