This book has permission to use the "N\&K method of COLORS".
31) Question: At his best pace, John can put in at most 10 dozen rivets per hour. At his worst pace, he can put in at least 8 dozen rivets per hour. John has to put in a total of 120 dozen rivets. What is a possible amount of time, in hours, it could take him, to put in those rivets?

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.
Solution:
Given

1) At his best pace,John can put in at most.... 10 dozen rivets per hour.
2) At his worst pace, he can put in at least.... 8 dozen rivets per hour.
3) John has to put in a..................... . total of 120 dozen rivets.
4) What is a possible amount of time, in hours, it could take him, to put in those rivets?

Road Map of Solution:
First Step: Find the time taken by John to putting in those rivets, at his best pace.
Second Step: Find the time taken by John to putting in those rivets, at his worst pace.
Third: Step: Any number in the above range is a correct answer.
First Step: Find the time taken by John to putting in those rivets, at his best pace.

$$
\begin{aligned}
& =\frac{\text { total number of rivets }}{\text { number of rivets put in per hour at best pace }} \\
& =\frac{120 \text { dozen }}{10 \frac{\text { dozen }}{\text { hour }}} \\
& =\frac{120 \text { dozen }}{10 \frac{\text { dozen }}{\text { hour }}} \\
& =\frac{12 \times \text { hour }}{1} \\
& =12 \text { hours }
\end{aligned}
$$

Second Step: Find the time taken by John to putting in those rivets, at his worst pace.

```
= total number of rivets
    = number of rivets put in per hour at worst pace
= 120 dozen
= 8\frac{dozen}{\mathrm{ hour }}
= 120 dozen
= 15\timeshour
= 15 hours
```

Third: Step: Any number in the above range (12 to 15 hours) is a correct answer. Answer

