This book has permission to use the "N\&K method of COLORS".
35) Question: John uses a right circular cylinder shown below, to store water. If the volume of the cylinder is 250π cubic feet, what is the diameter of the base of the cylinder in feet? It is given that the height of the cylinder is 10 feet.

For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.
Solution:
Given 1) John uses a right circular cylinder shown above, to store water.
2) The volume of the cylinder is 250π cubic feet.
3) What is the diameter of the base of the cylinder in feet?
4) It is given that the height of the cylinder is 10 feet.

Road Map of Solution:
First Step: Write down the formula for the "Volume of a Cylinder.
Second Step: Equate "formula of volume of a cylinder" with "volume of the cylinder" from Second Given Statement.
First Step: Write down the formula for the "Volume of a Cylinder".

$$
\begin{aligned}
& =\text { area of the circular base } \times \text { height of the cylinder } \\
& =\pi \times \text { radius }^{2} \quad \times \text { height of the cylinder }
\end{aligned}
$$

Second Step: Equate "formula of volume of a cylinder "with "volume of the cylinder"; from 2nd Given Stmnt.

```
formula of volume of a cylinder }==250\pi\mathrm{ cubic ft
area of the circular base xht.of the cylinder = 250\pi ft 3
m }\pi\times\mp@subsup{\mathrm{ radius }}{}{2}\quad\timesht.of the cylinder = 250\pi ft 3'
```

Insert statement

$$
\begin{array}{rlrl}
\Rightarrow & \pi \times \text { radius }^{2} & \times 10 f t & \times\left(\frac{1}{10 f t}\right) \\
\Rightarrow & = & 250 \pi f^{3} \times\left(\frac{1}{10 f t}\right) \\
\Rightarrow & \pi \times \text { radius }^{2} & & =25 \pi f^{2}
\end{array}
$$

Insert statement

\Rightarrow	$\pi \times$ radius $^{2} \times\left(\frac{1}{\pi}\right)$	$=$	$25 \pi f^{2} \times\left(\frac{1}{\pi}\right)$
\Rightarrow	radius 2		$25 \mathrm{ft}^{2}$
\Rightarrow	radius 2		$5^{2} \mathrm{ft}^{2}$
\Rightarrow	radius	$=$	5 ft

