This book has permission to use the "N\&K method of COLORS".
37) Question: Julie opened a bank account. She deposited $\$ 1000$ as the beginning amount in the account. The bank manager told her that the account would grow at 5\% interest compounded annually.
The bank manager gave her the formula $=\$ 1000(\mathrm{i})^{\mathrm{y}}$; where
" i " is based on the annual compound interest and
" y " represents the number of years after which the compound interest is to be calculated.
What should Julie replace the " i " with, if she wants to find the amount of money in her account after " y " years?
For speed, while solving something similar, only THINK the words in blue; WRITE only the words in other COLORS.
Given: 1) Julie deposited $\$ 1000$ as the beginning amount in the account.
2) The formula for amount of money in her account after " y " years $=\$ 1000(\mathrm{i})^{y}$;

Solve: What should Julie replace the "i" with, to find the amount of money in her account after "y" years?
Road Map of Solution:
First Step: Find amount after "1" year
Second Step: Find amount after "2" years
Third Step: Find amount after "3" years
Fourth Step: Find trend

At 5\% interest compounded annually,

AmtAtEndOfYear1 = AmtAtStartOfYear	$+5 \%$ of	AmtAtStartOfYear1		equation \#1
$=\$ 1000$	$+5 \%$ of	\$1000		
$=\$ 1000$	+5\% \times	\$1000		
AmtAtEndOfYear1 $=[(1$	+5\%) x	\$1000]		
AmtAtEndOfYear1 = AmtAtStartOfYear2				
AmtAtEndOfYear2 = AmtAtStartOfYear	$+5 \%$ of	AmtAtStartOfYear2		equation \#2
$=\left[\begin{array}{ll}(1+5 \%)\end{array}\right.$	\$1000] $+5 \% \quad x$	[($1+5 \%) \times$	\$1000]	
$=(1$	+5\%) \times	$[(1+5 \%) \times$	\$1000]	
	x	[($1+5 \%)^{2} x$	\$10007	
$\text { AmtAtEndOfYear2 }=$ \square				
AmtAtEndOfYear3 = AmtAtStartOfYear	$+5 \%$ of	AmtAtStartOfYear3		equation \#3
$=\left[\begin{array}{l}(1+5 \%)\end{array}\right.$	\$1000] $+5 \% \quad x$	[($1+5 \%)^{2} x$	\$1000]	
$=(1$	+5\%) ${ }^{\text {x }}$	$\left[(1+5 \%)^{2} x\right.$	\$1000]	
AmtAtEndOfYear3 =	x	$\left[(1+5 \%)^{3} x\right.$	\$1000]	

Similarly, based on the trend above, at 5\% interest compounded annually,

AmtAtEndOfYear6 =	[($1+5 \%)^{6} x$	\$1000]	equation \#4
AmtAtEndOfYear6 =	I	$\left.1+\frac{5}{100}\right)^{6} x$	\$1000]	equation \#4b
AmtAtEndOfYear6 =	[($1+0.05)^{6} x$	\$1000]	
AmtAtEndOfYear6 =	[($1.05)^{6} x$	\$1000]	equation \#4c

Comparing the formula given by the bank manager with the one calculated above (eq\#4c), we see,

$$
\$ 1000(\mathrm{i})^{\mathrm{y}} \quad=\quad[(\mathrm{l}
$$

Therefore, $\quad i=1.05 \ldots \ldots \ldots \ldots .$. Answer

